If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+32x-36=0
a = 10; b = 32; c = -36;
Δ = b2-4ac
Δ = 322-4·10·(-36)
Δ = 2464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2464}=\sqrt{16*154}=\sqrt{16}*\sqrt{154}=4\sqrt{154}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{154}}{2*10}=\frac{-32-4\sqrt{154}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{154}}{2*10}=\frac{-32+4\sqrt{154}}{20} $
| (286+6x)/10=79 | | 4m+4m-21=0 | | (.25x)(.10x)(.05x)=36.8 | | 35+58+x=180 | | 0.4/x=4.87/100 | | (286+6x)/10=70 | | (3/2)w-(3/5)=(-7/5)w-7 | | (5x+13)=(9x-39) | | (5x+2)^2=-8 | | (5x+13)=(9x-39 | | 4/x=4.87/100 | | -5x–9(1+2x)=‐9 | | h+32=81 | | 3-x+5=4-2x | | 5y=15(y+1)=35 | | 3(4x=2) | | 3(16x+9)=12x−27 | | 14−3x=-4x | | 4m+8m-21=0 | | 5/3=t-6/13 | | w/3-9=3 | | -1=3f(1+1)+7 | | 4(x-3)-4=6x+10-2x | | (2x-15)=(x+12) | | 26=2w+12 | | 3m+4,5m=15 | | -33+3n=2(1+5n) | | 8(y+9)=40 | | 14n=24 | | 204=(3n+1)*50/2 | | 2x+2(x-1)=3x+3 | | 8(x-3)=-2x+96 |